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FREWORD

The final report describes work done at the Technology Laboratory

for Advanced Composites (TELAC) of the Massachusetts Institute of

Technology for the Materials Laboratory, Air Force Wright Aeronautical

Laboratories, under Contract No. F33615-83-K-5016. Dr. James M.

Whitney was the contract monitor.

The work reported herein was performed during the period 1 June

1983 to 30 June 1986. The work represents the efforts of several

graduate and undergraduate students under the direction of the

indicated faculty and laboratory supporting staff.
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1. INTRODUCTION

The Technology Laboratory for Advanced Composites (TELAC) of

the Department of Aeronautics and Astronautics at M.I.T. has developed

facilities in recent years, to examine the structural properties of

advanced composite materials and the structures built from them.

The present report describes a basic research program undertaken

by TELAC to study the post-buckling, the damage tolerance, and

manufacturing techniques for various built-up, composite structures. The

work took place over a 3-year period, and was conducted by various

investigators. Five separate investigations were completed and have

been more fully reported in student theses or other laboratory reports

which are referenced here. These investigations dealt with (1) buckling

and failure studies of integrally stiffened graphite/epoxy panels, (2)

finite element and experimental studies of buckling of laminated thin-

wall composite structures, (3) damage tolerance of pressurized

graphite/epoxy cylinders initiated by slits at various angles, (4) damage

tolerance of pressurized graphite/epoxy cylinders flawed with slits and

holes, and (5) damage tolerance of pressurized graphite/epoxy cylinders

with a high strain-to-failure matrix system.

A Simmary of the above investigations is given in the present

report. For more thorough descriptions and details, refer to the

individually referenced reports cited here.

1.
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2. BUCKLING STUDIES OF INTEGRALY STIFFtNED GRAPHITE/EPOXY
PANELS

A series of thirteen integrally stiffened graphite/epoxy panels 13" x

12" (330 mm x 305 mm) were constructed and instrumented as shown in

Figure 1. These panels were made of Hercules AS1/3501-6, and

consisted of [±45/02s skins, with three four-ply 1" (25.4 mm) square

stiffeners integrally attached to them (the bottom two skin plies wrapped

around the three stiffeners). The entire panel assembly was cocured

using square rubber mandrels inserted in the square tubes to preserve

the shape during the cure. Subsequently, aluminum end fittings were

made and embedded in epoxy to distribute the compressive load evenly

along the edges. Details of the manufacturing technique for these panels

can be found in Chisolm [1] and Wang [2].

The panels were placed in an MTS testing machine and loaded in

compression to failure. A total of 10 strain gages, attached to the panels

as shown in Figure 1, recorded the strains simultaneously during the

compression tests. Buckle deformations were observed visually. Figure 2

shows a panel during testing.

Figure 3 gives the results of the compression tests on these 13

manufactured panels. Omitting panels 7 and 11, which were improperly

cured or loaded, and panels 1 and 2, which were on the initial part of the

manufacturing learning curve, the results indicate that with reasonable

care in manufacturing quality, the present type panel can support over

16,000 lbs (71.2 KN) before failure.

Figures 4 and 5 show the strains on the plate between the

stiffeners and on the stiffeners themselves, respectively for panel no. 9.

The plate between the stiffeners begins to buckle at about 5,500 lbs (24.5

2



KN), the stiffeners themselves begin to buckle at about 13,000 lbs, and

the maximum load achieved is about 17,500 lbs (77.9 KN). Also, a

sudden snap-through occurred on one of the plates between the

stiffeners at about 7,000 lbs (31.2 KN). The other panels showed similar

behavior as panel 9, except that the snap-through was often absent.

Simple estimates were made for the onset of buckling in the plates

between the stiffeners and for the maximum load carrying capacity of

the panels. For these estimates, the panels were considered as consisting

of three parts, namely, (A) three sides of a stiffener with two skin plies

attached on the outsides, (B) the fourth side of a stiffener with the

remaining six skin plies attached, and (C) the eight skin plies between

(and beyond) the stiffeners. The total unwrapped width of each of these

parts and the associated ply layup (for panel 9) were bA = 9" (229 mm)

with [±4 5 /+l 5 /02/+lS]T, bB = 3" (76.2 mm) with [+15/02/+15/02/± 4 5 ]T,

and bc = 9" (229 mm) with [±45/021s, respectively. Assuming the same

strain ell in all three parts and using appropriate laminate stiffnesses,

the total load P would be distributed into each of the three parts as,

j
Pi/P - (b/al l)i/ (b/ail)j (1)

where a, I is the leading element of the inverted extensional stiffness

matrix [aij ] = [Aij]-I of each part i, and b is its unfolded length. This gave

load distributions of PA/P = 0.35, PB/P = 0.23, Pc/P = 0.42, respectively.

For the buckling of the plate between the stiffeners, clamped orthotropic

plate theory [31 gives the critical buckling load per unit width, (Nxx)cr as

(Nxx~r 712(D 1II D22) I/ 2  k(xcr= ko

b2  (2)

3



where,

ko  4.52 + 2.45 D*

- D1 2 + 2D 6 6

(D1 !D 22)1/2

In the above expressions, the Dij's are the plate bending stiffnesses, b is

the plate width, ko is the buckling coefficient for long panels defined by

(D 22/D1 1 )1/4 L/b > 3, and L is the plate length. Applying this simple

expression and ignoring D 16, D2 6 coupling terms gave (Nxx)cr = 309.4

lbs/in (54,200 N/m), which with appropriate load redistrubtion, implied

plate buckling at a total load P = 6,630 lbs (29.5 KN). This gave a rough

estimate of the observed data in Figure 4.

For the maximum load carried by the panel, it was assumed that

the stiffeners (and its attached skin) carried all the load without buckling,

while the skin plies buckled and carried no load. Using a design

maximum strain criterion of 4,000 jistrain, and redistributing the total

load according to Equation (1) as PA/P = 0.60, PB/P = 0.40, resulted in a

value of the failure load of Pcr-- 22,600 lbs (100.4 KN). This again gave a

rough estimate of the observed failure loads in Figure 5.

The present investigation constituted a preliminary study to
a.

show the feasibility of manufacturing and testing integrally stiffened

graphite/epoxy panels. A more accurate analytic, finite element, and

4
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experimental investigation of such panels and their components was

next undertaken by Wang [2], and is described in the next section.

5



3. FINITE ELEMENT AND EXPERIMENTAL STUDIES OF BUCKLING IN
THIN-WALL STRUCTURES

The buckling and post-buckling behavior of laminated non-

complanar thin-walled structures were investigated both analytically

and experimentally in detail by Wang [2]. This constituted a natural

extension of the previous investigation.

Analytically, a 32-degree-of-freedom assumed stress hybrid

semiLoof finite element model was developed and utilized as the

analytical tool. This semiLoof element is shown in Figure 6, and has the

features that only three displacement components u, v, w are utilized at

the corner and mid-side nodes, while continuity of rotation with

neighboring elements is maintained by normal rotations w,n at two

points along each side. These features make it particularly convenient

for use with folded structures and at corners. An optimal stress pattern

for this finite element model was obtained based on a balanced stress

and displacement field technique, and programs for buckling and post-

buckling analyses were developed. For some standard problems and for

the prediction of buckling and post-buckling behavior in channels and

square tubes, the analysis gave good results. See Figures 7 and 8.

The experimental program consisted of the testing of four types of

laminated, graphite/epoxy thin-wall specimens: channels, square tubes,

stiffened plates and stiffened sections. All specimens had a length of 13"

(330 mm) and were manufactured from Hercules AS4/3501-6 prepreg

tape, using standard TELAC procedures and appropriate mandrels for the

various specimens. A special jig was built for mounting the different

types of specimens in the MTS te, ,ig machine and loading them in

6



compression. In addition to 10 strain gages attached to the specimens at

various locations, deflection tracker frames holding a total of four linear

variable differential transducers (LVDT's) were constructed and placed

next to the specimens to measure lateral deflection during the tests. The

tracker frames could be slid up and down along the specimen's axial

direction to give a complete sweep of the deflection. All manufacturing

and test procedures are described in detail by Wang [2].

Figure 9 gives a summary of the onset of buckling loads for the

overall test program, along with the analytic predictions from the finite

element method. Good agreement between experiment and theory was

found for the channels and square tubes. Figure 10 gives a summary of

the actual failure loads for these specimens. It should be noted that for

the square tubes, the largest initial buckling load did not correspond to

the largest failure load of the specimen. The channels and square tubes

failed by ply delamination at the corners due to stress concentrations and

large out-of-plane deflection, while the failure of the stiffened plates and

stiffened sections were first caused by delamination of the base-plate

from the square tube core of the stiffeners and covering face-sheet, and

finally completed by ply delamination at the stiffener corners.

Figure 11 shows the strains on the stiffened panels at various

indicated locations and clearly indicates the onset of buckling for the

plate and the stiffener. Figure 12 shows the deflection at four points

across the center of the panel. More detailed observation of the

deflection patterns along the entire axial length of the panel at various

loads, are shown in Figures 13 and 14. It should be noted that the

stiffened panels here have a slightly smaller overall width (11" (279

mm) rather than the 12" (305 am) of the previous investigation) and

7



the stiffeners are now six-ply, [±15/0] rather than the previous four-ply

configuration [+15/] s . Five half waves of deflection occur for both the

stiffeners and the plate between the stiffeners, indicating an interaction

between the buckling of the two components. Comparison of the results

of the stiffened panel with those of the stiffened section of the same

panel indicated that the stiffened panel can be characterized by the

behavior of its cutout part, assuming the stiffness of the stiffener is much

higher than that of the skin plate.

More detailed results and conclusions from this analytical and

experimental analysis of buckling of laminated thin-wall structures can

be found in the report by Wang [2]. A paper based on the analytical

semiLoof finite element developed here was given by Wang and Pian (41,

while a subsequent paper describing the experimental results and

correlations is in preparation: Wang, Pian, Dugundji and Lagace [5].

8
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An investigation was made into the damage tolerance and

istrophic failure of pressurized graphite/epoxy cylinders initiated by

flaws in the walls. This work followed on previous investigations at

.PAC by Rogers [6] and Graves (7], and is reported more frilly by Chang

Mar [8], [9].

For this investigation, a series of eight graphite/epoxy cylinders
*, , ," -- -_,-. ,; .

e constructed and tested, to obtain the internal pressure required to
Be rapid fracture to initiate by through-the-thickness slits at various

les. The cylinders were made from Hercules A370-5H/3501-6

haite/epoxy five-harness weave cloth prepreg, in a (0, 45)s layup ,
. . " . ,

antheses are used here in place of square brackets to indicate fabric

s, and the angle represents the warp direction of a ply weave). The . _W " C

riders had a diameter of 12" (305 mm), a length of 24" (610 mm), and .

e fitted with end caps. Slits of varying length were cut through the

thickness at different angles to the longitudinal axis, and sealed with ,,,.., _.-a,

hes made of thin aluminum strips. See Figure 15 for overall layout
. ... .... ... .... .... ... .. ..... .. . .

details. " "'"""
Testing took place in a large blast chamber capable of absorbing the

k -..- *. .- .".' .,%

gy from the explosion of 2 pounds of TNT. Internal pressure in the

der was increased monotonically until catastrophic failure was

ated at the slits. Internal pressure and strains at various locations _-NO,,

measured during the test. The failure itself was quite violent, and

mportant part of the test procedure was in retrieving the pieces of ,oL .1,

failed cylinder so that fracture paths could be determined. -
.9*.. ...9.

-p C ~. P -. *. -p p *.



Figure 16 gives a summary of the cylinders tested, their slit lengths

and orientation, and the pressures which caused catastrophic failure. A

sketch of the failure mode for a cylinder with a 45-degree slit is shown in

Figure 17. Experimental failure pressures for cylinders with different

length slits at a 45-degree angle are shown in Figure 18 along with some

analytical predictions.

Analytic predictions for the cylinder failures were based on test

data obtained on unidirectional loaded flat coupon specimens of the same

layup. The flat coupon specimens were "flawed" with slits on holes and

were found to reasonably fit the Mar-Lin relationship,

Oplate = Hc(2a) ".28  (3)

where oplate is the far-field fracture stress for the flat coupons, Hc is the

composite fracture parameter, and (2a) is the slit length or hole diameter.

The above flat coupon relation was modified using the Folias correction

[101, to account for the incre.;sed stress intensity which accompanies the

localized bending of the shell wall due to the presence of a crack. A

further correction using the notion of an "equivalent" cylinder, was used

io extend tile prediction to account for the angle of the slit. This involved

determining tile local radii of curvature perpendicular and parallel to the

slit. to obtain an equivalent stress concentration factor K for the

,pecimen. The prediction for failure stress of of the cylinders were then

expressed as.

Of = Opit e K (4)

where npl.,,e is the ,ire,,, tr m the Mar-Lin relation. Equation (3).

Analtic predicti ns ha,,cd ()n this method are ,hosw n in Figure IS tor the

10
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45-degree slits. Figure 19 shows another way of depicting the results,

namely, the slit length required to cause rapid fracture at an internal

pressure of I MPa versus the angle of the slit. (The experimental data

for this latter plot were adjusted somewhat to bring them to 1 MPa

levels.)

Generally, comparison of predicted values with experimental

results for these pressurized cylinders with slits at angles, showed the

failure estimation method is reasonable. It is noted that initial paths of

the fractures ran both longitudinally and circumferentially from the ends

of the angled slits, rather than along the angle of the slit (see Figure 17).

More detailed results and conclusions from this study can be found in the

report by Chang and Mar [81, and in a published article, Chang and Mar

[9]. Also, a general paper on fracture, longevity, and damage tolerance of

graphite/epoxy composite structures by Mar [111, makes use in part of

some of these results.

4A
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5. D&AGE. "IOERANqCI OF PRESSUaJ]RD~ ORAP A XY :

YLND RSLAWED WrT Ln'S AND HOL SM

Following on the previous study of damage tolerance and

catastrophic failure of pressurized graphite/epoxy cylinders with slits at

angles, an investigation was undertaken of the effects of different types

of flaws on the failure mechanisms of these cylinders. The flaws included

(a) two colinear longitudinal slits, (b) circular holes, (c) elongated (long)

holes, and (d) slits emanating from holes. This work, which is briefly

described here, is reported more fully in a report by Chang and Mar [121.

For this investigation, a series of 15 graphite/epoxy cylinders were

constructed and tested, as in the previous investigation, to obtain the

internal pressure required to cause catastrophic failure for the given size

and shape of flaw. The cylinders were all of the same material and

dimensions as before, only the flaw was now different. Figures 20

through 23 give a summary of the specific cylinders tested, the flaw type

and size, and the pressures for catastrophic failure. Sketches of typical

failure modes for each of the four types of flaws are given in Figures 24

through 27. All fracture paths seem to run longitudinally from the flaw

until they bifurcate near the ends of the cylinder. Occasionally, a fracture

would run circumferentially, but this was usually after the longitudinal

path was established. Figure 28 gives typical results from strain gages

oriented circumferentially and located axially at 10, 30, 80 and 160 mm

from the edge of the hole, for a cylinder with a hole. The higher strain

state near the hole is apparent.

Analytical predictions of the failure pressures for the various flaw

types were again based on the Mar-Lin relationship with suitable

121

4.
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modifications for the localized shell bending, and the flaw shape. The

predictions for failure stress of were again expressed as

Of - oplate/K (4)

where oplate is the stress from the flat plate Mar-Lin relation, Equation

(3), and K is a stress concentration factor for the particular flaw which

involves mainly the shell parameter,

X - [12(l-v2 )11 / 4 a/-rR' (5)

In the above, R, h, a, are the shell radius, shell thickness, and flaw

semi-length (i.e., radius) respectively. Although for flat plate tests,

holes and slits of the same size lead to the same fracture stress, for

cylinders the slits seem to be more critical above a value of X = 3.7

for the cylinders (Figure 29) due to the localized bending at the tip of

the slit.

Generally again, comparison of predictions with the

experimental test results showed that the method is reasonable for

estimating failure. More detailed results and conclusions can be

found in the report by Chang and Mar 1121.

13
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6. DAMAGE TOIERANCE OF PRESUREM COMPOSMIE CYLINDERS
WrM A HIGH STRAIN-TO-FAILURE MATRIX SYSTEM

Continuing with the study of damage tolerance of pressurized

cylinders, an experimental and analytical investigation was conducted to

examine the damage tolerance of graphite/epoxy cylinders and flat

coupons which utilize a high strain-to-failure matrix system. The

material system selected was a five-harness weave cloth prepreg, made

of Hercules AS4 fiber embedded with American Cyanamid CYCOM 907

epoxy (formerly BP-907). The results were then compared with the

previous investigations involving the 3501-6 epoxy matrix system. This

work, which is briefly described here, is reported in detail by Saeger [131.

For this investigation, tensile tests were first run on a series of flat

coupons made of the AS4/CYCOM 907 cloth fabric in (0)4, (90)4, (±45)s,

and (0, 4 5 )s layups to obtain the basic stiffness and strength properties of

the material (parantheses are used here in place of square brackets to

indicate fabric plies, and the angle represents the warp direction of a ply

weave). A total of 65 flat coupons were tested which included unnotched

specimens and specimens with different size transverse slits and holes.

Figures 30 and 31 show the unnotched and notched fracture

characteristics of the (0, 45). laminate coupons with transverse slits and

with holes, respectively. Each point represents the average of five tests.

For these two notch shapes (transverse slits and holes), no dependence on

differing notch geometry was found for the fracture stress, and the

fracture stresses seemed to correlate reasonably with the Mar-Lin theory

as well as the Whitnev-Nuismer average stress and point stress criteria.

Internal pressure tests were than run on a series of 5 cslinder

specimens made ()I the ,ame AS4 ('YC()M 907 material with a four-ply

14
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(0, 45) s layup. The cylinders had the same dimensions as in previous

tests, i.e., 610 mm long with a diameter of 305 mm, and were cut through

with axial slits of 50, 75, 100, and 150 mm lengths, and pressurized

monotonically to failure. Strain gages were placed at a number of

locations along the extension of the slit to measure circumferential strain.

Figure 32 shows the measured strains at five locations during

pressurization of a cylinder with a 75-mm slit. The large strains close to

the slit are to be noted. Figure 33 indicates the failure pressure obtained

for a given size slit. A.

To relate the flat coupon fracture data to the pressurized cylinder

failure, account should be taken of the localized stress intensification near

the slit (crack) tip due to the cylinder's bending action there. Rather than

using the Folias correction [10] as in the previous investigations, it was

decided here to solve the problem numerically in order to get a better

understanding of the stress state near the slit. Accordingly, a finite

difference solution was undertaken to solve the shallow shell equations,

Eha 2 ?Aw + V4F -0'-

R ax 2

(6)

a2 aj2F PO a4

RD ax2  D

in the neighborhood of the slit tip. In the above, E and D are the modulus

of elasticity and bending stiffness of the quasi-isotropic (0, 45) s laminate,

R is the cylinder radius, h the thickness, po the pressure, and the

coordinates x and y are nondimensionalized with respect to the half-slit
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length, a. A refined finite difference grid for the analysis is shown in

Figure 34, which was solved after a coarser grid was solved. Figure 35

shows the resulting displacements w near a 75-mm slit, while Figure 36

gives a contour plot of the resulting hoop stress concentration factors

K =yy/uhoop in that vicinity. The corresponding hoop strains measured

during the tests are compared with the analysis in Figure 37. Reasonable

agreement between test and analysis is obtained, showing the large

strain concentration factors developed, and the extent of the edge zone in

which they arise. Similar agreement was obtained for the other slit

lengths.

Estimates were made of the failure pressures of the cylinders with

slits by correcting the flat plate coupon data for the stress intensification

effects due to the cylindrical geometry. The Whitney-Nuismer average

stress 'riterion, together with results from the finite difference analysis,

gave good correlation with the experiments, as seen in Figure 33. Also

shown is the Mar-Lin criterion corrected by the simple Folias correction

described in the previous sections. The agreement here, although

adequate, was not as good as for the Whitney-Nuismer criterion.

Comparison of the above tests on high strain-to-failure CYCOM 907

epoxy with earlier tests on 3501-6 epoxy seemed to indicate that, both

from the coupon tests and from the cylinder tests, the "tough" CYCOM

907 matrix system was more notch sensitive than the baseline 3501-6

epoxy system, and hence, may not always be desirable. For more details

of the present investigation, refer to Saeger [131. A paper based on this

work is currently in preparation [14].
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7. CC DING REMARKS

The present report described a basic research program to study the

post-buckling, damage tolerance, and manufacturing techniques for some

heavily loaded, built-up graphite/epoxy composite structures. Channels,

square tubes, and integrally stiffened panels were built, analyzed, and

tested. The nature of the buckling and failure modes were noted. An

analysis utilizing a stress hybrid semiLoof finite element was developed

and used to describe the behavior of these folded structures. Also, a

series of pressurized cylinders (representing pressurized fuselages) were

built, analyzed, and tested to determine the damage tolerance and failure

modes due to various type flaws. Simple prediction methods using the

Folias stress intensification factor were used to predict failure. The use

of a high strain-to-failure matrix system resulted in greater notch

sensitivity.

The study reported helps provide some additional information on

the use of graphite/epoxy composites in heavily loaded structures. For

more thorough description and details, refer to the individual reports
cited here.
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NOMENQATUJRE

a flaw semi-length

4.

all leading element of inverted extensional stiffness matrix

Aij element of extensional stiffness matrix

b plate width

Dij element of bending stiffness matrix
4.

D* bending stiffness ratio defined in Eq. (2)
'S

E modulus of elasticity

F plane stress function

h plate thickness

HC composite fracture parameter

ko  plate buckling coefficient

K stress concentration factor

L plate length

Nxx stress resultant

PO pressure loading

P compressive load

R cylinder radius

w plate lateral deflection

Ell axial strain
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cylinder shell parameter defined by Eq. (5)

Of fracture stress

Opiate fracture stress for flat plate

CFyy hoop stress
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1~ 12.

(305 mm)

FIGURE 1 Geometry and Layout of Stiffened Panels
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FIGURE 2 Stiffened Panel during a Compression Test
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Plate Stiffenr *Oer of Maxtmm

Panel Lay-up Lay-up Strain Gages Load (bs.)

I 4S/021 s  !451]s 5 13,600

2 S 13,970

3 " - Not Tested

4 " 10 20.100

5 10 18.100

6 " - Not Tested

7 10 11.0SO"

8 10 18.6S0

9 (+15/0) s  10 17,700

10 10 16,050

11 [-30) s  10 12.53?*

12 C+15/0] s  10 16,250

13 [0/-15]s 10 16,900

*Misaligned panel, fast loading
**Improper cure

FIGURE 3 Panels Manufactured and Tested
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FIGURE 5 Measured Strains in Stiffeners, Panel 9
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FIGURE 6 Sketch of 32 DOF SemiL-oof Element Model
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FIGURE 7 Accuracy of Buckling Load for an Isotropic,
Simply Supported, Square Tube
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Type I I Ixperisental IesuitkM I Predict I
of I Layup Iei ----- -i----- Value I Error

spocimee I I I VALUR I MEAN (C.V.) I (kNI I
-- I-----------------i------ --- I ------------------- ----------I--------

I ~I L1I 10.20III
CRANNEL I (±15/01,62 I2 I 9.27 I9.53 (5.031)1 9.16 1 4.041

II 3 I 9.12 1 1
-- -------------------------------I---------------I----------I--------

III 8.06 8
I (!15/0), 1 2 1 6.67 I6.17 (15.42%)l 6.59 1-4.89%

3 1 9.7S III
------------------------ l-----------I--------------- ----------

I I 1 I 6.6
SQUARE 1 (115/01 2T 2 1 9.15 1 6.01 (11.671)1 7.74 1 3.49%

I 1 3 1 6.03 1 1 1
SECTION ---------------- --- I--------- ---------------- ----------I--------

I ~I 1 6.10 II
Tunts 1 (±15 2/021T 2 1 8.30 1 7.46 (13.01%)lI 6.87 1 8.S9%

1 3 1 7.96 1 1 1
--------------- I---I ------ --------------- ---------- --------

I~ 1 1 6.731
I E±45/t±l5'SI 1~ 2 1 9.94 1 8.61 (18.67%)1 10.91 1 19.25%
1 1 3 1 10.7S I I I

------------ I--------------- --- I--------- --------------- ---------- --------
ST!7FE1450 Skin Plate I I

FLATS I L45/0 1 1 1 1 60.59 I
(skin platel Tube cirl 1 2 1 66.72 1 64.23 (4.10%3 I
buckling) I (±15/0), 1 1 65.39 1 1
------------ I------------------------- --------------- --------------
STzrrzjgo Skin Plate I III

PLATS I 114S/0 ) 1 1. 100.17 1
(stiffener I Tube NJr 1 2 1 114.41 1 104.89 (6.42%)l
buckling) I (!15/015 I 31 100.09 1 1

---------- I ------------------ --------------- ----------
I Same as II

STzrrzNgD I stiffened I I I 25.58 i
SgCTION I plate 1 2 1 33.73 132.11 (14.97%)t

1 layup 1 3 1 37.01 1 1

aThe standard value to define the error is the analytical prediction.

b The buckling lead of stiffened plates has two values: one defines the
buckling load found from the bifurcation Point of skin plate and another
is that from the stiffeners.

FIGURE 9 Summary Data of Buckling Loads
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Specimen Zxperiaenta8 Results
-- - -- - - -- - -- - - -- - - --- - - - - - - - - - - - - - - - - - -

Type Layup rFailuce Load (kNI I mean (kNiI C.V.
----------------- I---------------------I-----------I--------

1 29.56
CHANNEL I (15/0 s2 1 2 1 29.40 30.19 3.27%

1 3 1 31.58

-- -------------- I---------------lI ------------------- ----------- I--------I 16.17
(.15/01 s 2 1 15.44 15.5S 3.01%
I~ 3 31 15.04I

---------------I---------------------I-----------I--------
1 I14.72

SQUAR I (±1 5/0 2T 1 2 1 15.21 14.45 5.19%
1 1 3 1 13.43 .

SECTION ----------------------------------- ---------- ---------
I 11.78 1

TUBE I [±152/021T 1 2 1 12.86 12.19 3.94%
1 3 1 11.92

------------------------------------- ----------- I--------
I I I 11.16 I

|(_45/(tl5) sT 2 13.57 12.72 8.68%
1 3 1 13.43 ,

--------------------------------------------------- I----------- --------
I Skin Plate I I

STIFFENED I (*45/0 I 1 1 145.01 1
PLATE Tube cort 1 2 131.89 1 128.92 11.25%

±15/01, 1 3 1 109.87 1
-------------- I----------- I------------------- ----------- --------
STIFFENED same as 1 1 32.07 ,

SECTION panel I2 I 43.33 39.44 1 3.25%
I layup 3 42.93 .

FIGURE 10 Summary Data of Failure Loads
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FIGURE 11 Measured Strains in Stiffened Panels at Six
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FIGURE 12 Measured Deflections of Stiffened Panels at

Four Locations
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FIGURE 15 Pressurized Cylinder Layout and Patch
Details
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FIGURE 18 Measured and Predicted Failure Pressures for
45 Degree Slits
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P - 1 MPa
R - 152.5 mmh - 1 .4 mm 020"

hul.4n0 028200- H a763 MPa (mwn)

CC

_ 16

14 * test point, 141

120-

100

0Experiment length adjusted
to 1 MPa

0 10 20 30 40 50 60 70 80

e slit orientation ldegree)

FIGURE 19 Measured and Predicted Slit Lengths Versus
Slit Orientation Angle
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6 test data for 0 - 2 In

x test data for 0 - 2.5 in

C test data for D - 3 In

5~K slt
K

4

3

Khole

2

0 3.67 5

FIGURE 29 Stress Concentration Factor K for a Circular Hole
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